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Abstract
We show that the strong amplification of terahertz radiation takes place in an array of field-effect
transistors at small DC drain currents due to hydrodynamic plasmon instability of the collective
plasmon mode. Planar designs compatible with standard integrated circuit fabrication
processes and strong coupling of terahertz radiation to plasmon modes in FET arrays make
such arrays very attractive for potential applications in solid-state terahertz amplifiers
and emitters.

Introduction

Unstable plasma oscillations (plasmons) in field-effect
transistors (FETs) with two-dimensional (2D) electron
channels can be used for the generation of terahertz (THz)
radiation [1]. Hydrodynamic instability of plasmons in the
2D channel of a FET with a single gate was predicted in [2].
This instability type develops at small electron drift velocities
(which might be much less than the plasmon phase velocity) if
asymmetrical boundary conditions for plasmons are realized
at different ends of the gated portion of the 2D electron
channel, such as a short-circuit condition at the source and an
open-circuit condition at the drain ends of the gated section
of the channel. Alternatively, large drain currents close to
the saturation regime may produce needed asymmetry of the
channel [3]. THz emission linked to unstable plasmons in
different FET structures was reported in several papers [3–5].
This type of plasmonic instability advantageously differs
from the Cherenkov-like plasmon instability in the grating-
gated 2D electron structure, where the electron DC drift
velocity has to exceed the grating-coupled-plasmon phase
velocity [6–8].

References [1–5] did not address the important problem
of coupling the unstable plasmons to THz radiation. The gated
plasmons, in general, couple very poorly to THz radiation due
to an acoustical nature and, hence, small net dipole moment of
this plasmon mode [9] so that special antennas are needed to
couple the gated plasmons to THz radiation. This is consistent

with the very small output THz emission power (of nanowatt
level or less) observed in experiments [3–5] without using
special coupling elements.

In an earlier paper [10], it was suggested that the coupling
between plasmons in the FET channel and THz radiation might
be more effective if FET units were arranged in an array. In
our recent paper [11], we showed that the enhancement of the
coupling grows proportionally to the number squared of the
FET units in the array due to the formation of a collective
plasmon mode delocalized over the entire FET array. Coupling
of the gated plasmons in the FET array to THz radiation also
dramatically improves because the charge distributions in the
gate and side contacts have the same symmetry as excited
by both the gated plasmon mode or by THz radiation [11].
Because of that, the FET array acts as an aerial matched
antenna coupling the plasmons to the THz radiation.

In this paper, we theoretically study the amplification of
THz radiation in a one-dimensional planar FET array and show
that strong amplification takes place at relatively small DC
drain currents due to the hydrodynamic plasmon instability. In
section 1, we obtain the expression for the conductivity of the
drifting 2D electron fluid confined in a spatially periodic FET
array. The electromagnetic approach that we use to calculate
THz absorption and amplification in the FET array is described
in section 2. In section 3, we discuss the plasmonic and THz
amplification properties of the FET array. The conclusions are
summarized in section 4.
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Figure 1. Schematic diagram of the FET array. Incoming THz
radiation is incident normally from the top.

1. High-frequency conductivity of drifting
2D electron fluid in the planar FET array

We consider a field-effect-transistor array with isolated 2D
electron channels and conjugate side contacts of adjacent FET
units (figure 1). An external THz wave is incident upon the
FET array in the normal direction to the FET array plane. The
terahertz amplification takes place due to the hydrodynamic
instability of plasma waves developed in the FET channels.
In the FET array shown in figure 1, the boundary conditions
at the source and drain ends of the channel in each FET unit
are symmetrical because of the planar geometry of the FET
array. The condition for the plasmon instability is ensured by
the excitation of specific plasmon modes in the FET array. The
incoming THz wave with the electric field polarized across
the FET array (in the x-direction) induces antisymmetrical
vertical electric field under the source and drain edges of the
gate contacts in each FET unit. This electric field excites
plasmon modes with the nodes of the vertical component of the
oscillating electric field under the centers of the gate contacts.
It means that one has the short-circuited condition for the
vertical electric field under the center of the gate contact, while
there are close-to-open-circuited conditions at the edges of
the gate contact in each FET unit. To ensure the plasmon
instability in such a device, one has to use oppositely applied
DC drain currents in sections 1 and 2 of the FET unit (we
assume that counter-directed DC electron drift velocities have
the same value in each of the two half-sections of the FET unit,
see figure 1). To achieve that, an additional current carrying
contact is added to the device channel in the middle between
the two contacts shown in figure 1. (This contact at the center
of the FET unit channel is not shown in figure 1.) In this sense
each FET unit in the array is similar to two identical single-gate
FETs with combined gates and merged source contacts, which
are short-circuited in the center of the FET unit. Depending
on biasing, the electron velocity direction opposite to that in
figure 1 could also be obtained.

The entire set of electron channels in the FET array
(which is infinite in our theoretical model) can be considered
as a single conductive plane with a spatially periodic (with
period L) electron density and DC electron drift velocities.
The most general linear expression for the electric current with
surface density J (x, 0) induced in a spatially modulated 2D
electron system located in the plane y = 0 by the oscillating
electric field E(x, y, t) = E(x, y) exp(−iωt) is (harmonic

time-dependence is omitted)

J (x, 0) =
∫ ∞

−∞
σ(x, x ′)E(x ′, 0) dx ′, (1)

where the kernel σ(x, x ′) describes the spatial dispersion in
the 2D electron system. In a spatially periodic system with
period L along the x-coordinate, the electric field E(x, y) has
spatially periodic amplitude

E(x, y) =
∞∑

m=−∞
Em(y) exp(iqm x), (2)

where Em(y) is the amplitude of the Fourier-harmonic of the
electric field having an in-plane wavevector qm = 2πm/L,
with m being an integer. Substituting equation (2) into
equation (1) yields

J (x, 0) =
∞∑

m=∞
σm(x)Em(0) exp(iqm x) (3)

with the conductivity function

σm(x) =
∫ ∞

−∞
σ(x, x ′) exp[iqm(x

′ − x)] dx ′.

Ohm’s law in the form of equation (3) accounts for a
spatial periodicity of the FET array and also for the spatial
dispersion of the conductivity of the 2D electron system arising
from (counter-directed) DC electron drift in different half-
sections of each FET unit.

An explicit expression for the conductivity function σm(x)
can be found assuming a certain physical model, either the
kinetic or hydrodynamic one, describing the electron dynamics
in a 2D electron system. We describe the electron motion in a
spatially periodic 2D electron channel and side metal contacts
of the FET array by the Euler equation

d

dx

[
V0(x)Ṽ (x)

]
+ (ν − iω)Ṽ (x)

= − e

m

∞∑
m=−∞

Em(0) exp(iqmx) (4)

and the continuity equation

d

dx

[
V0(x)Ñ(x)

]
− iωÑ (x) = − d

dx

[
N0(x)Ṽ (x)

]
, (5)

where N0(x) and V0(x) are the equilibrium sheet electron
density and DC electron drift velocity, respectively, Ñ (x)
and Ṽ (x) are the amplitudes of the oscillating 2D electron
density and electron velocity in the FET channel, Em(0) is the
amplitude of the Fourier-harmonic of the in-plane oscillating
electric field in the plane of the 2D electron channel, e and m
are the electron charge (e < 0) and effective mass, respectively,
and ν is the electron momentum relaxation rate. All the
variables in equations (4) and (5) are periodic functions of the
x-coordinate with period L.

Let us rewrite equations (4) and (5) in the canonical forms

dψV

dx
+ s1(x)ψV (x) = g1(x), (6)
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dψN

dx
+ s2(x)ψN = g2(x), (7)

for functions ψV (x) = V0(x)Ṽ (x),and ψN (x) = V0(x)Ñ(x),
respectively, where

s1(x) = ν − iω

V0(x)
, s2(x) = − iν

V0(x)
,

g1(x) = e

m

∞∑
m=−∞

Em(0) exp(iqm x),

g2(x) = − d

dx

[
N0(x)

V0(x)
ψV (x)

]
.

Both equations (6) and (7) are differential equations of first
order with variable coefficients of the form

d f

dx
+ ϕ1(x) f (x) = ϕ2(x)

for a function f (x) defined in the interval a � x � b. The
general solution of this equation is

f (x) = exp

(
−

∫ x

a
ϕ1(x

′) dx ′
) [

f (a)+
∫ x

a
ϕ2(x

′)

× exp

(∫ x

a
ϕ1(x

′)dx ′
)

dx ′
]
. (8)

We assume a rectangular profile of the equilibrium sheet
electron density distribution in a 2D electron channel plane
over the period of the FET array: N0(x) = N2D in either
half-section 1 and 2 of the FET unit channel and N0(x) =
NM in the side contacts. The DC electron drift velocities
are V (1)

0 and V (2)
0 (V (1)

0 = −V (2)
0 ) in half-sections 1 and 2

of the FET unit channel, respectively. We assume the DC
electron drift velocity in the side metal contacts to be zero
since NM � N2D. In this case the integrals in equation (8)
can be evaluated explicitly and the free function f (a) can
be determined using the condition of the periodicity of the
FET array with period L. In such a way, we can calculate
the amplitudes of the oscillating 2D electron density Ñ(x) =
ψN (x)/V0(x) and electron velocity Ṽ (x) = ψV (x)/V0(x)
and then obtain the oscillating current density in the plane
of the FET channel J (x, 0) = e[N0(x)Ṽ (x) + V0(x)Ñ (x)].
Substituting this electric current density into Ohm’s law in the
form of equation (3) yields the conductivity function

σm(x) =

⎧⎪⎨
⎪⎩
σ (1)m for 0 � x < w/2,

σ (2)m for w/2 � x < w,

σM for w � x < L.

(9)

where

σ (1,2)m = i
e2 N (1,2)

2D ω

m
(
ω − qm V (1,2)

0

)(
ω − qm V (1,2)

0 + iν
) (10)

are the conductivities of the 2D electron channel in half-section
1 and 2 of the FET unit for different wavevectors qm =
2πm/L, which account for the spatial dispersion of the 2D
electron plasma conductivity arising due to the DC electron
drift, σM is a frequency-independent conductivity of the metal
side contacts. Because we assume that the DC electron drift

velocity is zero in the side metal contacts, there is no spatial
dispersion inherent in σM and, hence, it has the same value for
all wavevectors qm = 2πm/L. It should be noted that a simple
expression, equation (10), for the conductivity function of
spatially confined drifting 2D electron plasma can be obtained
only for the rectangular profile of spatial modulation of the
equilibrium electron density and DC drift velocity because
otherwise the integrals in equation (8) cannot be taken as
elementary functions.

2. Electromagnetic formalism

We consider a periodic sequence of 2D electron channels
separated by the metal side contacts lying in the plane y =
0 at the surface of the substrate with dielectric constant ε3

(figure 1). The metal gates are separated from the 2D electron
channels by a barrier slab of thickness d , having dielectric
constant ε2. A plane electromagnetic wave with frequency ω
and electric field E(y, t) = E (0) exp(−iωt − ik0y), where
k0 = ω/c, with c being the speed of light, is incident
upon the structure normally from the ambient media with
dielectric constant ε1 = 1 (vacuum). The electric field of the
incident electromagnetic wave is polarized in the direction of
periodicity of the FET array (the x-direction).

The total electric field E in the structure is determined by
the Maxwell equations. After Fourier transformation of the
Maxwell equations and applying the conventional boundary
conditions for the electric and magnetic fields at y = 0 and
d , we can inter-relate the Fourier amplitudes of the oscillating
in-plane electric field and currents in the 2D electron channel
and gate planes:

Em(d) = Z (1,1)m Jm(d)+ Z (1,2)m Jm(0)+ η1 E (0)δm,0,

Em(0) = Z (2,1)m Jm(d)+ Z (2,2)m Jm(0)+ η2 E (0)δm,0,
(11)

where

Z (1,1)m = i
4π

ω�
(1)
m

(
β [2,3]

m χ(2)m + α[2,3]
m

χ
(2)
m

)
,

Z (1,2)m = i
8πε2

ω�
(1)
m p(2)m

,

η1 = 1

�0χ
(1)
0

[(
α

[2,1]
0 χ

(2)
0 + β

[2,1]
0

χ
(2)
0

)(
β

[2,3]
0 χ

(2)
0 + α

[2,3]
0

χ
(2)
0

)

−
(

2ε2

p(2)0

)2]
+ 1

χ
(1)
0

,

Z (2,1)m = i
8πε2

ω�
(1)
m p(2)m

,

Z (2,2)m = i
4π

ω�
(1)
m

(
β [2,1]

m χ(2)m + α[2,1]
m

χ
(2)
m

)
,

η2 = 2ε2

�0 p(2)0 χ
(1)
0

(
α

[2,1]
0 − β

[2,1]
0

)(
χ
(2)
0 − 1

χ
(2)
0

)
,

�(1)
m = χ(2)m

1 −
(
χ
(2)
m

)2
�m;
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�m =
[(

2ε2

p(2)m

)2

−
(
β [2,3]

m χ(2)m + α[2,3]
m

χ
(2)
m

)

×
(
β [2,1]

m χ(2)m + α[2,1]
m

χ
(2)
m

)]
,

with

α[k,l]
m = εk p(l)m + εl p(k)m

p(k)m p(l)m

, β [k,l]
m = εk p(l)m − εl p(k)m

p(k)m p(l)m(
k = 1, 2, 3
l = 1, 2, 3

)
,

χ(1)m = exp
(−p(1)m d

)
, χ(2)m = exp

(−p(2)m d
)
,

and

p(k)m = ±
√

q2
m −

(ω
c

)2
εk (k = 1, 2, 3).

The sign before the radical in the last expression is chosen
to satisfy the conditions at y → ±∞, which are the zero
field condition for the evanescent Fourier-harmonics (m �=
0), and the scattering condition for the radiative Fourier-
harmonics (m = 0). The latter condition requires that only
electromagnetic waves outgoing from the FET array exist at
y → ±∞.

The amplitudes of the Fourier-harmonics of the oscillating
electric current density in the 2D electron channel y = 0 and
the gate y = d planes are

Jm(0) = 1

L

∫ L

0
J (x, 0) exp(−iqmx) dx,

Jm(d) = 1

L

∫ L

0
J (x, d) exp(−iqmx) dx,

(12)

where J (x, d) and J (x, 0) are the (spatially periodic with
period L) amplitudes of the oscillating electric current
densities in the FET array gates and in the 2D electron channel
plane. These electric current densities are defined as

J (x, 0) =

⎧⎪⎨
⎪⎩

J1(x) for 0 < x < w/2,

J2(x) for w/2 < x < w,

JC(x) for w < x < L,

(13)

J (x, d) =
{

JG(x) for 0 < x < w,

0 forw < x < L,
(14)

where according to equation (3)

J1(x) =
∞∑

m=−∞
σ (1)m Em(0) exp(iqm x), (15)

J2(x) =
∞∑

m=−∞
σ (2)m Em(0) exp(iqm x), (16)

JC(x) = σC

∞∑
m=−∞

Em(0) exp(iqm x), (17)

JG(x) = σG

∞∑
m=−∞

Em(d) exp(iqm x), (18)

with σ (1)m and σ (2)m being the conductivities of the 2D drifting
electron fluid in the half-sections 1 and 2 of the FET unit
channel defined by equation (10) for (V (2)

0 = V0 = −V (1)
0 ),

and σC, σG are the local frequency-independent sheet
conductivities of the side and gate contacts, respectively. From
now on we assume that σC and σG have equal values σM.

Using Ohm’s law given by equations (15)–(19), definitions
from equation (12), and relationships given by equation (11)
we construct the system of four coupled integral equations for
the current densities in different parts of the FET unit:

J1(x) =
∫ w/2

0
J1(x

′)G1,1(x, x ′) dx ′

+
∫ w

w/2
J2(x

′)G1,2(x, x ′) dx ′ +
∫ L

w

JC(x
′)G1,3(x, x ′) dx ′

+
∫ w

0
JG(x

′)G1,4(x, x ′) dx ′ + G1,0

for 0 � x � w/2, (19)

J2(x) =
∫ w/2

0
J1(x

′)G2,1(x, x ′) dx ′

+
∫ w

w/2
J2(x

′)G2,2(x, x ′) dx ′ +
∫ L

w

JC(x
′)G2,3(x, x ′) dx ′

+
∫ w

0
JG(x

′)G2,4(x, x ′) dx ′ + G2,0

for w/2 � x � w, (20)

JC(x) =
∫ w/2

0
J1(x

′)G3,1(x, x ′) dx ′

+
∫ w

w/2
J2(x

′)G3,2(x, x ′) dx ′ +
∫ L

w

JC(x
′)G3,3(x, x ′) dx ′

+
∫ w

0
JG(x

′)G3,4(x
′, x) dx ′ + G3,0

for w � x � L, (21)

JG(x) =
∫ w/2

0
J1(x

′)G4,1(x, x ′) dx ′

+
∫ w

w/2
J2(x

′)G4,2(x, x ′) dx ′ +
∫ L

w

JC(x
′)G4,3(x, x ′) dx ′

+
∫ w

0
JG(x

′)G4,4(x, x ′) dx ′ + G4,0

for 0 � x � w, (22)

with the kernels

G1,1 = G1,2 = G1,3 = 1

L

∞∑
m=−∞

σ (1)m Z (2,2)m exp
[
iqm(x − x ′)

]
,

G1,4 = 1

L

∞∑
m=−∞

σ (1)m Z (2,1)m exp
[
iqm(x − x ′)

]
,

G2,1 = G2,2 = G2,3 = 1

L

∞∑
m=−∞

σ (2)m Z (2,2)m exp
[
iqm(x − x ′)

]
,

G2,4 = 1

L

∞∑
m=−∞

σ (2)m Z (2,1)m exp
[
iqm(x − x ′)

]
,

G3,1 = G3,2 = G3,3 = σM

L

∞∑
m=−∞

Z (2,2)m exp
[
iqm(x − x ′)

]
,

4
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G1,4 = σM

L

∞∑
m=−∞

Z (2,1)m exp
[
iqm(x − x ′)

]
,

G4,1 = G4,2 = G4,3 = σM

L

∞∑
m=−∞

Z (1,2)m exp
[
iqm(x − x ′)

]
,

G4,4 = σM

L

∞∑
m=−∞

Z (1,1)m exp
[
iqm(x − x ′)

]
,

and the free terms

G1,0 = η1 E (0)σ
(1)
0 , G2,0 = η1 E (0)σ

(2)
0 ,

G3,0 = η1 E (0)σM, G4,0 = η2 E (0)σM.

We solve integral equations (19)–(22) numerically,
approximating the current densities in different parts of the
FET unit by the expansions

J1(ξ1) =
∞∑

n=0

C (1)
n Pn(ξ1), J2(ξ2) =

∞∑
n=0

C (2)
n Pn(ξ2),

JC(ξ3) =
∞∑

n=0

C (3)
n Pn(ξ3), JG(ξ4) =

∞∑
n=0

C (4)
n Pn(ξ4),

(23)
where Pn(ξ1−4) are the Legendre polynomials of nth degree
and C (1−4)

n are unknown coefficients. Variables ξ1−4(−1 �
ξ1−4 � 1) are related to the x-coordinate by

x = (1 + ξ1)w/4, (0 � x � w/2),

x = (3 + ξ2)w/4, (w/2 � x � w),

x = (3 + ξ3)w/2, (w � x � L),

x = (1 + ξ4)w/2, (0 � x � w).

Substituting the expansions of equation (23) into
the integral equations (19)–(22) and using Galerkin’s
procedure [12] with the Legendre polynomials Pn(ξ1−4) as
the orthogonal basis functions, we transform the system of
integral equations (19)–(22) into an infinite system of linear
algebraic equations for the coefficients C (1−4)

n , which could
then be truncated and solved numerically to achieve a desired
level of convergence.

Once the electric current densities given by equation (23)
are found, we can calculate (using equation (12)) the
amplitudes of the Fourier-harmonics of the oscillating current
densities in the 2D electron channel y = 0 and the gate y = d
planes:

Jm(0) = l1 exp(−iπml1)

nmax∑
n=0

inC (1)
n jn(−πml1)

+ l1 exp(−i2πml1)

nmax∑
n=0

inC (2)
n jn(−πml1)

+ l2 exp(−iπml2)

nmax∑
n=0

inC (3)
n jn(−πml2),

Jm(d) = l3(−1)m exp(−iπml3)

nmax∑
n=0

inC (4)
n jn(−πml3),

Figure 2. Spectra of THz (a) absorption and (b) amplification in the
FET array at the fundamental plasmon resonance. Electron DC drift
velocities in the FET channel are (from the top to bottom): 1 × 104,
4 × 105, 5.5 × 105, 1 × 106, 1 × 107, 7.35 × 106 cm s−1. Other FET
parameters are N2D = 2.57 × 1011 cm−2, ν = 1.5 × 1010 s−1,
L = 4 μm, w = 2 μm, d = 0.4 μm, m = 0.067m0, where m0 is the
free electron mass.

where l1 = w/(2L), l2 = 1 − w/L, l3 = w/L, and jn(ϑ) is
the spherical Bessel function of the first kind of the nth order.
These amplitudes of the Fourier-harmonics of the oscillating
current density are then used to calculate the electric fields by
equation (11).

The absorbance, A, of the FET array is calculated by the
Joule law

A = 1

2L P0
Re

[∫ w/2

0
J ∗

1 (x)E(x, 0) dx+
∫ w

w/2
J ∗

1 (x)E(x, 0) dx

+
∫ L

w

J ∗
C(x)E(x, 0) dx+

∫ w

0
J ∗

G(x)E(x, d) dx

]
, (24)

where P0 = c|E (0)|2/8π is the energy flux density in the
incident wave (A > 0 in the absorption regime and A <

0 in the amplification regime). We can also calculate the
reflectance, R, and transmittance, T , of the FET array as R =
|E0(d)|2/|E (0)|2 and T = |E0(0)|2√ε3/|E (0)|2, respectively.
In both the absorption and amplification regimes the energy
conservation law, A + R + T = 1, is satisfied.

3. Results and discussion

Figure 2 shows the evolution of the THz absorption spectrum
of the FET array at the fundamental plasmon resonance when
the DC electron drift velocity/bias current in each section
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Figure 3. Oscillating current density over the period of the FET
array at the fundamental plasmon resonance for the DC drift velocity
7.35 × 106 cm s−1. The horizontal dashed line marks the amplitude
of the current excited in a side contact by the incoming uniform THz
wave. x ′ = x − w/2.

of the FET unit increases. At small DC bias current, the
plasmon absorption resonance decreases in intensity, becoming
narrower because of decreasing the radiative linewidth of the
plasmon resonance. At a certain threshold value of the DC drift
velocity, the absorption becomes negative, which corresponds
to the amplification of the incoming THz wave (either the
THz reflection or transmission coefficients are greater than
unity). The width of the amplification line is by an order of
magnitude less than the plasmon absorption linewidth because,
in the former case, the dissipation linewidth and the radiation
linewidth of the unstable plasmons (which is negative in
the amplification regime) cancel each other (pay attention
to different scales along the frequency axis in figures 2(a)
and (b)).

Distribution of the oscillating current density over the FET
unit at the fundamental plasmon resonance in the amplification
regime (figure 3) has an even symmetry in respect to the center
of the FET unit (this corresponds to an odd symmetry of the
distribution of the vertical component of the oscillating electric
field with its node in the center of the FET unit). It follows
from figure 3 that even at the fundamental plasmon resonance
half of the plasmon wavelength is shorter than the length of the
gate contact of the FET unit, while in a single-gate FET with
symmetrical boundary conditions at different ends of the gated
region of the channel half of the plasmon wavelength exceeds
the length of the gate contact due to the effect of fringing
fields [9]. This happens because the plasmon oscillations in
the FET array are more ‘rigid’ due to the effect of the side
metal contacts connecting different FET units. Inhomogeneous
currents forming the standing plasmon mode in the FET unit
oscillate under the gate contact and at the edges of the side
contacts, while a homogeneous oscillating current flows in the
middle part of a side contact. This homogeneous current is
defined by the current excited in a side contact by the incoming
uniform THz wave and the induced current excited in a side
contact by plasmon charges oscillating at the edges of the side
contact.

In accordance with [2], the amplification develops at small
DC drift velocities V0/Vph < 1, where Vph is the plasmon
phase velocity. The plasmon phase velocity at the fundamental
plasmon resonance is Vph = λpω/2π , where λp can be
estimated as a double distance between the two antinodes

in figure 3. However, the strongest amplification, with the
highest amplification factor exceeding 200, takes place at much
smaller DC drift velocities V0/Vph 	 1, which correspond
to drain currents much smaller than the saturation current,
than those ensuring the largest plasmon instability increments
predicted in [2]. The reason for this is that the condition for
the plasmon instability and the condition for optimal coupling
of the unstable plasmons to THz radiation differ so that
smaller THz amplification is reached under stronger plasmon
instability.

4. Conclusions

In conclusion, we have shown that the FET array with
additional contacts under the centers of the gates can
effectively amplify THz radiation via the hydrodynamic
plasmon instability mechanism even at small drain DC
currents, far below the saturation current regime. No special
antenna elements are needed to couple the unstable plasmons
to THz radiation because the FET array itself acts as an
effective aerial matched receiving/emitting antenna. No special
lumped circuit element design is needed to ensure specific
boundary conditions in the ends of the FET channel, which
are necessary for the conventional plasmon instability. Such
conditions are automatically satisfied by the excitation of the
plasmon mode with proper symmetry in the FET unit by
incoming THz radiation, while the FET array has an entirely
planar design. This makes FET arrays very attractive for
potential applications as THz emitters and amplifiers.
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